C Memory, Arrays, and
Pointers

Computer Systems, Section 3.8, 6.1

Binghamton CS-220

University Spring 2016

Edge Triggered “Flip/Flop”

Clk|@®

Binghamton CS-220

University Spring 2016

Registers

D7 D6 D5 D4 D3 D2 D1 DO

© © © o L1 L1 © 0

Clk

Binghamton CS-220

University Spring 2016

Random Access Memory (RAM)

D1 D2[@—— p3[@}-
..RI;I‘EH ..RD‘E'E ._RD‘E'S ADDR DATA
0 0 0

/ﬁ Ir Ir |
cLk[@] ,\Dmx — R1D1 R1D2 R1D3
e L o U 1= U 1= -
. .]
R2D1 R2D2 R2D3
L o - 1= - — 1= U —
L i I O O 1
R3D1 R3D2 R3D3
a o n L4 | n L7 -
y y | 0 1 0
ol ol ol
MU ML MLIX

01 »
e —{@ o gz a3

Binghamton CS-220

University Spring 2016

iq “ ” Value
What is "Memory S —
OxFFFF FFFE
* In computers, memory is a list of bytes OXFFFF FFFD
* A byte is 8 bits, two hex digits, one ASCII character OxFFFF FFFC

* Each byte of memory has a specific ADDRESS... the index of OxFFFF FFFB
the byte from the beginning of memory :

* Each byte can be read or written independently 0x0000 008
. 0x0000 0CO7
e We show as a column with address 0 at the bottom OXOOOO e
X
e For this class, we will use 32 bit addresses 00000 0CO5
* 4 bytes, 8 hex digits, values 0-4G
e Most modern machines use 64 bit addresses 0x0000 0003

0x0000 0002
0x0000 0001
0x0000 0000

* Initial value of memory is unknown

o o | o o o
> M| M > >
o = O tT1 O
w 0 | = 1] >

Binghamton CS-220

University Spring 2016

* Each word starts at an address divisible by 4

. —_ SOOI 0%0C00 0000
* Within a word, bytes go left to right ' -

0x0000 0008 Fl05:RLRI0 R 10100
0x0000 0004 Fl05:IElRIo R I0I0)0
0x0000 0000 b0 RT0 IR0 [1]0)

Words of Memory
OXFFFF FFFC

OXFFFF FFF8

* A “word” is the “standard” size of data on a e
machine OXFFFF FFFO

» We will work with 32 bit words OXFFFF FFEC
* 4 bytes = one integer = one float = one address e

* Old PC’s had 16 bit words 0x0000 0C10

* Modern machines often have 64 bit words 0x0000 0COC

* Memory as a list of words rather than a list of 0x0000 0CO8
bytes 0x0000 0C04
I

0x0C000000

0x09000000

0%06000000

0x03000000

Binghamton CS-220

University Spring 2016

0x0000 000C 0501810010010
0x0000 0008 Fl05:RLRI0 R 10100
0x0000 0004 Fl05:IElRIo R I0I0)0
0x0000 0000 b0 RT0 IR0 [1]0)

C Values
OXFFFF FFFC

OXFFFF FFF8

* Every “C” value resides in memory 0XFFFF FFF4
* The “address” of a value is the location of the D
beginning of that value in memory OxFEEFEEEC

* Integer @ 0x0000 0004 = 0x0600 0000 050000 0C10
* or 6 (little endian) 00000 0COC

* Integer @ 0x0000 0C06 = 0x1801 0000 0x0000 0C08
+ or 0x0000 0118 = 280 (little endian) 0x0000 0C04
0x0C000000

0x09000000

0x06000000

0x03000000

CS-220
Spring 2016

Binghamton

University

Little vs. Big Endian
OXFFFF FFFC OXEFBE ADDE

OXFFFF FFF8 OXEFBE ADDE

* When we examine memory, if we OXFFFFFFF4 OXEFBE ADDE
look at individual bytes, we see the oxFFFFFFFO 0xEFBE ADDE
effect of little-endian OXFFFF FFEC | OXEFBE ADDE
 [f we look at words, the libraries -
used to print those words switch OxO00DOLTY - R
ends for us, so we “see” big-endian, 000 VL0t OXTADLODED
even when the data itself is little OxUOAPOLYS

. 0x0000 0C04 0x1801 0000
endian. —

* From now on, we will show words 0x0000000c |0x0€00 0000
big-endian (bytes right to left)” 0x0000 0008 0x0900 0000
0x0000 0004 | 0x0600 0000

0x0000 0000 0x0300 0000

Binghamton CS-220
University Spring 2016

Variable Concept

Memory

277272 222 227 27777 707 22 22?777 7770

277272 2227 2222 2227 2222 22?7 2?77 27777 007 2777

First Initial

Binghamton

University

CS-220

Spring 2016

C Variables

* The compiler reserves space in memory
for each variable.

 The “address” of a value is the location of
the beginning of the value of that variable
iIn memory

int height=280;

height

e We can think of the variable name as a
label at a specific memory location”

OxFFFF FFFC
OxFFFF FFF8

OxFFFF FFF4
OxFFFF FFFO
OxFFFF FFEC

0x0000 0C10
0x0000 0COC
0x0000 0CO8
0x0000 0C04

0x0000 000C
0x0000 0008
0x0000 0004
0x0000 0000

OxDEAD BEEF
OxDEAD BEEF

OxDEAD BEEF
OxDEAD BEEF
OxDEAD BEEF

0x0000011B
0x0000011A
0x00000119
0x00000118

0x0000000C
0x0000 0009
0x00000006
0x00000003

Binghamton CS-220

University Spring 2016

C Pointers

OXFFFF FFFC gEQd0aN002 80
OxFFFF FFF8 g0y

* Each value is at a specific memory location. 0xFFFFFFFs I

Weau B33 0xDEAD BEEF

: : _ eau B aa 0l 0xDEAD BEEF
int height=280; : -

UK 000000118

* We can use the address of the value in O ol 0x0000011A

memory (e.g. 0x0000 0C04) as an 0x0000 0CO8 |- Ikikk:

alternate label height 0x0000 0C04 | 0010 [0L0E5 ke

* Called a “pointer” to a value NPPPIOIT 00000 000C
X X

* Pointers are 32 bits (8 hex digits) IR 0x00000009

0x0000 0004 [LERCRI0T0I0R0I0IEIE
0x0000 0000 FLEACRIRIIIE]

Binghamton

University

CS-220

Declaring Pointers

* An asterisk (*) in front of a data type in a
declare statement means “is a pointer to”

0y O o

int *numPtr=0x00000C04:

numPtr

* Type: Type of data being pointed to el
 Name: Name of the pointer itself
* Value: The address of the data

OxFFFF FFFC
OxFFFF FFF8

OxFFFF FFF4
OxFFFF FFFO
OxFFFF FFEC

0x0000 0C10
0x0000 0COC
0x0000 0CO8
0x0000 0C04

0x0000 000C
0x0000 0008
0x0000 0004
0x0000 0000

Spring 2016

OxDEAD BEEF
O0xDEAD BEEF

0xDEAD BEEF
0xDEAD BEEF
OxDEAD BEEF

0x0000011B
0x0000 0C04
0x00000119
0x00000118

0x0000000C
0x0000 0009
0x0000 0006
0x00000003

Binghamton

CS-220

University

Spring 2016

“Address Of” operator

* An ampersand (&) in front of an expression
means “address of” that expression.

o

int “numPtr=&height;

numPtr

* Expression may be any reference to memory |height
e Variable name
* Function name

OxFFFF FFFC
OxFFFF FFF8

OxFFFF FFF4
OxFFFF FFFO
OxFFFF FFEC

0x0000 0C10
0x0000 0COC
0x0000 0CO8
0x0000 0C04

0x0000 000C
0x0000 0008
0x0000 0004
0x0000 0000

OxDEAD BEEF
O0xDEAD BEEF

0xDEAD BEEF
0xDEAD BEEF
OxDEAD BEEF

0x0000011B
0x0000 0C04
0x00000119
0x00000118

0x0000000C
0x0000 0009
0x0000 0006
0x00000003

Binghamton

University

CS-220

“Value At” operator

* An asterisk (*) in front of an expression

means “value at” that expression.
Pointer To

int *“numPtr=&height;
*numPtr)=10;

* Value At operator takes an address as an
argument

e Value at can be used to read or write data

Spring 2016

numPtr

height

OxFFFF FFFC
OxFFFF FFF8

OxFFFF FFF4
OxFFFF FFFO
OxFFFF FFEC

0x0000 0C10
0x0000 0COC
0x0000 0CO8
0x0000 0C04

0x0000 000C
0x0000 0008
0x0000 0004
0x0000 0000

OxDEAD BEEF
O0xDEAD BEEF

0xDEAD BEEF
0xDEAD BEEF
OxDEAD BEEF

0x0000011B
0x0000 0C04
0x00000119
0x0000 000A

0x0000000C
0x0000 0009
0x0000 0006
0x00000003

Binghamton CS-220

University Spring 2016

Type Checking with Pointers

* int *x; // X is a pointer to a signed integer
* int **y; // y is a pointer to a pointer to a signed integer
* &z - Type is: pointer to <type of z>

* (*myptr) - Type is: type which myptr is pointing to
e.g. (*fnumPtr)="string here”;

“Unable to assign ‘char * to int”

* Special pointer type: void * - pointer to a unspecified type
* void * pointers can be cast to pointers to any type!
* Used as “universal” pointers

Binghamton CS-220

University Spring 2016

C Gotcha: "Dereferencing a Null Pointer”

e “NULL” in C is a macro defined to 0x0000 0000
* Note: NULL is a 4 byte word “0”, or address 0

 NULL address is used to indicate that this pointer is not yet set
* 0 is an address which “belongs” to the operating system
* Programs can read at 0, but cannot write at 0

int *p=NULL; // P is a pointer to nothing

if (X>O) { p:&x; } Segmentation Violation when x<=0
(*p) = 5;

Binghamton CS-220

University Spring 2016

Allases In C

* Most languages allow only one reference to a specific piece of data
* C allows “aliasing”... multiple ways to reference a specific value

int x=10;

int *y=&x; // (*y) is now an alias for x
*y)=11;

printf(“The value of x is %d\n”,x);

Binghamton

CS-220

University

C Arrays

* List of contiguous values in memory

* Array Declaration:

. P Em

int vec[5];

* Type: Type of each element

* Name: Identifier for the entire array
* Count: Number of elements in the list

Spring 2016

vec[4]
vec|3]
vec[2]
vec[1]
vec[0]

OxFFFF FFFC
OxFFFF FFF8

OxFFFF FFF4
OxFFFF FFFO

0x0000 0C14
0x0000 0C10
0x0000 0COC
0x0000 0CO8
0x0000 0C04

0x0000 000C
0x0000 0008
0x0000 0004
0x0000 0000

OxDEAD BEEF
OxDEAD BEEF

OxDEAD BEEF
OxDEAD BEEF

0x11111111
0x11111111
0x11111111
0x11111111
0x11111111

0x0000000C
0x0000 0009
0x00000006
0x00000003

Binghamton

CS-220

University

Array Element Access

* Square Bracket Operator
* Argument: Index from 0 to (Count-1)

* Example:

for(i=0;i<5;i++) {

* Can be used to read or write an array

vecli]=280+i; }

element

Spring 2016

vec[4]
vec|3]
vec[2]
vec[1]
vec[0]

OxFFFF FFFC
OxFFFF FFF8

OxFFFF FFF4
OxFFFF FFFO

0x0000 0C14
0x0000 0C10
0x0000 0COC
0x0000 0CO8
0x0000 0C04

0x0000 000C
0x0000 0008
0x0000 0004
0x0000 0000

OxDEAD BEEF
OxDEAD BEEF

OxDEAD BEEF
OxDEAD BEEF

0x0000011C
0x0000011B
0x0000011A
0x00000119
0x00000118

0x0000000C
0x0000 0009
0x00000006
0x00000003

Binghamton CS-220

University Spring 2016

Array Name

* In C, by convention, the array name is the address of the first
element of the array

vec=&(vec[0])
* Therefore, the following holds:

&(vecli]) == (char *)vec + sizeof(vec[0]) * i

Binghamton CS-220

University Spring 2016

Pointer Arithmetic

OXFFFF FFFC gEQd0aN002 80
OxFFFF FFF8 g0y

* You can do math (+-*/%) with pointers,

but... x 0x0000 0D10 LR[S E:
A “unit” in pointer arithmetic is the size of :
the data type pointed to by the pointer Vecldll 0x00000C14 FUUUUMEVIE

vec|3] 0x00000C10 T IE
o _ vec[2] 0x00000COC [OOTE
int *x; int vec[5]; vec[1] 0x00000C08 KO LIE
for (x=vec; x<=&vec[5]; x++) (*X)=3; vec[0] 0x0000 0C04 [l LiE

0x0000 000C FLERRILER0III16
0x0000 0008 FLEL O LILERNII0E,
0x0000 0004 [LERCRI0T0I0R0I0IEIE
0x0000 0000 FLERCRIOTOT0RI0I0 K

Binghamton CS-220

University Spring 2016

Abstraction

An array is an indexable list of data items

char buffer[200]; // buffer is a list of 200 characters
buffer[0]=‘H’; // set the first item in buffer to ‘H’

int length[3]; // length is a list of 3 integers
length[0]=12; length[1]=12; length[2]=12;

Binghamton CS-220

University Spring 2016

Leaky Abstraction

e An array can be treated as an indexable list of data items but...
* An array is a contiguous list of data items in memory or ...
* A contiguous list of data items in memory is an array

int array[10];

array == &(array[0]) or (*array)=array|[0]
arrayli] ==*(array+i);

Binghamton CS-220

University Spring 2016

Pointer / Array Ambiguity

* In C, we can treat pointers like arrays, and arrays like pointers

Using array notation Using pointer notation
int strlen(char str[]) { int strlen(char *str) {
int i=0: int i=0;
while(str[i]!=0) { while((*stn)!=0) {
i |+ +; str++;
} 5
. return Ii;
return I;
} 5

Binghamton

CS-220

University

Inverted Arrays

 Standard representation of arrays in CS is
top to bottom.

int vec[5]={365,366,367,368,369};

vec

0]=365

vec[1]=366

= vec[2]

" vec[1]

OxFFFF FFFC
OxFFFF FFF8

OxFFFF FFF4
OxFFFF FFFO

0x0000 0C14
0x0000 0C10
0x0000 0COC
0x0000 0CO8
0x0000 0C04

0x0000 000C
0x0000 0008
0x0000 0004
0x0000 0000

Spring 2016

OxDEAD BEEF
OxDEAD BEEF

OxDEAD BEEF
OxDEAD BEEF

0x0000011C
0x0000011B
0x0000011A
0x00000119
0x00000118

0x0000000C
0x0000 0009
0x00000006
0x00000003

Binghamton CS-220

University Spring 2016

Multi-Dimensional Arrays

OxFFFF FFFC [E0:0):N00:12Y
OxFFFF FFF8 [gE:0):N0a31 0y

int xyz[2][3]; // 2 rows/3 cols NauuBa3 M 0xDEAD BEEF

1][2] 0x00000C18 [bCLNIkED)
1][1] 0x0000 0C14 | Wbl [0LIkE Lo

|

|
gl O o i O I 0 Bl 0x0000011B
xyz[1][1] xyz[1][2] xyz[0][2] 0x0000 0COC [Lr 0L L0 ResEELS

|

|

0][1] 0x0000 0CO8 [ihlliNikkL
0][0] 0x0000 0C0O4 b lilfiNikbk:

* Think of multi-dimensional array indexes

like an odometer... rightmost digit first LOLNILY 0x0000000C
LNk 0X0000°0009

m 0x0000 0004 00l 12
000000000 TG TIIE

Binghamton CS-220

University Spring 2016

Arrays of Pointers

int *xyz[2]; // 2 pointers to lists xyz[1] 0x0000 CAOc |l lordiL:
xyz[0] 0x0000 CAO8 [L0R:0L0L0L0XeL010]0)

xyz[1][2] 0x0000 C710 [0l Ne[H15

M ("xyz[0])[0] xyz[1][1] 0x0000 C70C |0b{llNe/iz:
m (*xyz[0])[1] xyz[1][0] 0x0000 C708 0L IRIII11E

("xyz[0])[2]

xyz[0][2] 0x0000 CO08 | bbbl [0ki[1]i}

_.m xyz[0][1] 0x0000 CO04 Fib Lol [i[i]0k

xyz[0][0] 0x0000 COO0 05010100 R0x010]0)

Binghamton

CS-220

University

Spring 2016

Difference between Arrays and Pointers

Array
* Fixed, pre-defined length

* Space reserved by compiler
* All 2D rows equal length

Pointers to List

* No pre-defined length
* No space reserved
* 2D rows may be varying length

Binghamton CS-220

University Spring 2016

Arrays with Undefined Sizes

* C allows the first dimension of an array to be of unspecified size
* e.g. float vec|]; // vector of unspecified length
* e.g.int m|][3]={0,1,2,3,4,5,6,7,8};

* m is a matrix of an unspecified number of rows
 Each row in m has 3 columns

* Space isreserved for 9 values (based on initializer) or 3 rows

* Why does C require all but the first dimension to be specified?

Binghamton CS-220

University Spring 2016

Dealing with Undefined lengths

* Implicit array length
int triArea(int *sides); // sides points to three integers

* Explicit independent length
int polyArea(int n, int sides[]); // sides points to n integers

e “Guard” values
int polyArea(int * sides) { // sides points to list of positive integers
for(; (*sides)>0; sides++) { // Deal with next side...

Binghamton CS-220

University Spring 2016

Character Strings

* In C, there is no “string” type

* Text consists of an array of characters

char nextLine[80];

char bgColor[]="magenta”; // bgColor has 8 values

* By default “Guard” is a “null terminator” = 0x00
* Note: NOT “NULL’

Binghamton CS-220

University Spring 2016

Working with Strings

char *name="Thomas’;
orintf("namel0] is at %p\n”,&name[0]);
orintf("name value is %x\n”,name);
orintf(“name string is %s\n”,name);

name|0] is at 0x23cb10
name value is 23cb10
name string is Thomas

32

