
Binghamton

University

CS-220

Spring 2016

C Memory, Arrays, and
Pointers

Computer Systems, Section 3.8, 6.1

Binghamton

University

CS-220

Spring 2016

Edge Triggered “Flip/Flop”

D Clk Qn

X 0 Q0

X 1 Q0

X 0→1 Q0

D 1→0 D

Binghamton

University

CS-220

Spring 2016

Registers

Binghamton

University

CS-220

Spring 2016

Random Access Memory (RAM)

ADDR DATA

00 0 0 0

01 0 0 1

10 0 1 0

11 1 1 1

Binghamton

University

CS-220

Spring 2016

What is “Memory”

• In computers, memory is a list of bytes
• A byte is 8 bits, two hex digits, one ASCII character

• Each byte of memory has a specific ADDRESS… the index of
the byte from the beginning of memory

• Each byte can be read or written independently

• We show as a column with address 0 at the bottom

• For this class, we will use 32 bit addresses
• 4 bytes, 8 hex digits, values 0-4G

• Most modern machines use 64 bit addresses

• Initial value of memory is unknown

Address Value

0xFFFF FFFF

0xFFFF FFFE 0xDA

0xFFFF FFFD 0xED

0xFFFF FFFC 0xBE

0xFFFF FFFB 0xEF

…

0x0000 0C08 0x00

0x0000 0C07 0x01

0x0000 0C06 0x18

0x0000 0C05 0x00

….

0x0000 0003 0x00

0x0000 0002 0x00

0x0000 0001 0x00

0x0000 0000 0x03

Binghamton

University

CS-220

Spring 2016

Words of Memory

• A “word” is the “standard” size of data on a
machine

• We will work with 32 bit words
• 4 bytes = one integer = one float = one address
• Old PC’s had 16 bit words
• Modern machines often have 64 bit words

• Memory as a list of words rather than a list of
bytes

• Each word starts at an address divisible by 4

• Within a word, bytes go left to right*

Address Value

0xFFFF FFFC 0xEFBE ADDE

0xFFFF FFF8 0xEFBE ADDE

0xFFFF FFF4 0xEFBE ADDE

0xFFFF FFF0 0xEFBE ADDE

0xFFFF FFEC 0xEFBE ADDE

…

0x0000 0C10 0x001B 0100

0x0000 0C0C 0x001A 0100

0x0000 0C08 0x0019 0100

0x0000 0C04 0x0018 0100

….

0x0000 000C 0x0C00 0000

0x0000 0008 0x0900 0000

0x0000 0004 0x0600 0000

0x0000 0000 0x0300 0000

Binghamton

University

CS-220

Spring 2016

C Values

• Every “C” value resides in memory

• The “address” of a value is the location of the
beginning of that value in memory

• Integer @ 0x0000 0004 = 0x0600 0000
• or 6 (little endian)

• Integer @ 0x0000 0C06 = 0x1801 0000
• or 0x0000 0118 = 280 (little endian)

Address Value

0xFFFF FFFC 0xEFBE ADDE

0xFFFF FFF8 0xEFBE ADDE

0xFFFF FFF4 0xEFBE ADDE

0xFFFF FFF0 0xEFBE ADDE

0xFFFF FFEC 0xEFBE ADDE

…

0x0000 0C10 0x1B01 0000

0x0000 0C0C 0x1A01 0000

0x0000 0C08 0x1901 0000

0x0000 0C04 0x1801 0000

….

0x0000 000C 0x0C00 0000

0x0000 0008 0x0900 0000

0x0000 0004 0x0600 0000

0x0000 0000 0x0300 0000

Binghamton

University

CS-220

Spring 2016

Little vs. Big Endian

• When we examine memory, if we
look at individual bytes, we see the
effect of little-endian

• If we look at words, the libraries
used to print those words switch
ends for us, so we “see” big-endian,
even when the data itself is little
endian.

• From now on, we will show words
big-endian (bytes right to left)*

Address Byte Value Word Value

0xFFFF FFFC 0xEFBE ADDE 0xDEAD BEEF

0xFFFF FFF8 0xEFBE ADDE 0xDEAD BEEF

0xFFFF FFF4 0xEFBE ADDE 0xDEAD BEEF

0xFFFF FFF0 0xEFBE ADDE 0xDEAD BEEF

0xFFFF FFEC 0xEFBE ADDE 0xDEAD BEEF

…

0x0000 0C10 0x1B01 0000 0x0000 011B

0x0000 0C0C 0x1A01 0000 0x0000 011A

0x0000 0C08 0x1901 0000 0x0000 0119

0x0000 0C04 0x1801 0000 0x0000 0118

….

0x0000 000C 0x0C00 0000 0x0000 000C

0x0000 0008 0x0900 0000 0x0000 0009

0x0000 0004 0x0600 0000 0x0000 0006

0x0000 0000 0x0300 0000 0x0000 0003

Binghamton

University

CS-220

Spring 2016

Variable Concept

9

Memory

???? ???? ???? ???? ???? ???? ???? ????

Age

???? ????

First_Initial

???? ???? ???? ???? ???? ???? ???? ????

gpa

Binghamton

University

CS-220

Spring 2016

C Variables

• The compiler reserves space in memory
for each variable.

• The “address” of a value is the location of
the beginning of the value of that variable
in memory

int height=280;

• We can think of the variable name as a
label at a specific memory location*

Label Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

0xFFFF FFF4 0xDEAD BEEF

0xFFFF FFF0 0xDEAD BEEF

0xFFFF FFEC 0xDEAD BEEF

…

0x0000 0C10 0x0000 011B

0x0000 0C0C 0x0000 011A

0x0000 0C08 0x0000 0119

height 0x0000 0C04 0x0000 0118

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

Binghamton

University

CS-220

Spring 2016

C Pointers

• Each value is at a specific memory location.

int height=280;

• We can use the address of the value in
memory (e.g. 0x0000 0C04) as an
alternate label

• Called a “pointer” to a value

• Pointers are 32 bits (8 hex digits)

Label Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

0xFFFF FFF4 0xDEAD BEEF

0xFFFF FFF0 0xDEAD BEEF

0xFFFF FFEC 0xDEAD BEEF

…

0x0000 0C10 0x0000 011B

0x0000 0C0C 0x0000 011A

0x0000 0C08 0x0000 0119

height 0x0000 0C04 0x0000 0118

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

Binghamton

University

CS-220

Spring 2016

Declaring Pointers

• An asterisk (*) in front of a data type in a
declare statement means “is a pointer to”

int *numPtr=0x00000C04;

• Type: Type of data being pointed to

• Name: Name of the pointer itself

• Value: The address of the data

Type Name Initial Value

Label Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

0xFFFF FFF4 0xDEAD BEEF

0xFFFF FFF0 0xDEAD BEEF

0xFFFF FFEC 0xDEAD BEEF

…

0x0000 0C10 0x0000 011B

numPtr 0x0000 0C0C 0x0000 0C04

0x0000 0C08 0x0000 0119

height 0x0000 0C04 0x0000 0118

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

Binghamton

University

CS-220

Spring 2016

“Address Of” operator

• An ampersand (&) in front of an expression
means “address of” that expression.

int *numPtr=&height;

• Expression may be any reference to memory
• Variable name

• Function name

• …

Expression

Label Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

0xFFFF FFF4 0xDEAD BEEF

0xFFFF FFF0 0xDEAD BEEF

0xFFFF FFEC 0xDEAD BEEF

…

0x0000 0C10 0x0000 011B

numPtr 0x0000 0C0C 0x0000 0C04

0x0000 0C08 0x0000 0119

height 0x0000 0C04 0x0000 0118

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

Binghamton

University

CS-220

Spring 2016

“Value At” operator

• An asterisk (*) in front of an expression
means “value at” that expression.

• Value At operator takes an address as an
argument

• Value at can be used to read or write data

Label Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

0xFFFF FFF4 0xDEAD BEEF

0xFFFF FFF0 0xDEAD BEEF

0xFFFF FFEC 0xDEAD BEEF

…

0x0000 0C10 0x0000 011B

numPtr 0x0000 0C0C 0x0000 0C04

0x0000 0C08 0x0000 0119

height 0x0000 0C04 0x0000 000A

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

Pointer To

Value At

int *numPtr=&height;
(*numPtr)=10;

Binghamton

University

CS-220

Spring 2016

Type Checking with Pointers

• int *x; // x is a pointer to a signed integer

• int **y; // y is a pointer to a pointer to a signed integer

• &z – Type is: pointer to <type of z>

• (*myptr) – Type is: type which myptr is pointing to
e.g. (*numPtr)=“string here”;

• Special pointer type: void * - pointer to a unspecified type
• void * pointers can be cast to pointers to any type!

• Used as “universal” pointers

“Unable to assign ‘char *’ to int”

Binghamton

University

CS-220

Spring 2016

C Gotcha: “Dereferencing a Null Pointer”

• “NULL” in C is a macro defined to 0x0000 0000
• Note: NULL is a 4 byte word “0”, or address 0

• NULL address is used to indicate that this pointer is not yet set
• 0 is an address which “belongs” to the operating system
• Programs can read at 0, but cannot write at 0

int *p=NULL; // P is a pointer to nothing

…

if (x>0) { p=&x; }

(*p) = 5;

Segmentation Violation when x<=0

Binghamton

University

CS-220

Spring 2016

Aliases in C

• Most languages allow only one reference to a specific piece of data

• C allows “aliasing”… multiple ways to reference a specific value

int x=10;

int *y=&x; // (*y) is now an alias for x

(*y)=11;

printf(“The value of x is %d\n”,x);

Binghamton

University

CS-220

Spring 2016

C Arrays

• List of contiguous values in memory

• Array Declaration:

int vec[5];

• Type: Type of each element

• Name: Identifier for the entire array

• Count: Number of elements in the list

Label Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

0xFFFF FFF4 0xDEAD BEEF

0xFFFF FFF0 0xDEAD BEEF

…

vec[4] 0x0000 0C14 0x1111 1111

vec[3] 0x0000 0C10 0x1111 1111

vec[2] 0x0000 0C0C 0x1111 1111

vec[1] 0x0000 0C08 0x1111 1111

vec[0] 0x0000 0C04 0x1111 1111

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

Type Name Count

Binghamton

University

CS-220

Spring 2016

Array Element Access

• Square Bracket Operator
• Argument: Index from 0 to (Count-1)

• Example:

for(i=0;i<5;i++) {

vec[i]=280+i; }

• Can be used to read or write an array
element

Label Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

0xFFFF FFF4 0xDEAD BEEF

0xFFFF FFF0 0xDEAD BEEF

…

vec[4] 0x0000 0C14 0x0000 011C

vec[3] 0x0000 0C10 0x0000 011B

vec[2] 0x0000 0C0C 0x0000 011A

vec[1] 0x0000 0C08 0x0000 0119

vec[0] 0x0000 0C04 0x0000 0118

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

Binghamton

University

CS-220

Spring 2016

Array Name

• In C, by convention, the array name is the address of the first
element of the array

vec=&(vec[0])

• Therefore, the following holds:

&(vec[i]) == (char *)vec + sizeof(vec[0]) * i

Binghamton

University

CS-220

Spring 2016

Pointer Arithmetic

• You can do math (+-*/%) with pointers,
but…

• A “unit” in pointer arithmetic is the size of
the data type pointed to by the pointer

int *x; int vec[5];

for (x=vec; x<=&vec[5]; x++) (*x)=3;

Label Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

…

x 0x0000 0D10 0x0000 0C18

…

vec[4] 0x0000 0C14 0x0000 0003

vec[3] 0x0000 0C10 0x0000 0003

vec[2] 0x0000 0C0C 0x0000 0003

vec[1] 0x0000 0C08 0x0000 0003

vec[0] 0x0000 0C04 0x0000 0003

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

Binghamton

University

CS-220

Spring 2016

Abstraction

An array is an indexable list of data items

char buffer[200]; // buffer is a list of 200 characters

buffer[0]=‘H’; // set the first item in buffer to ‘H’

int length[3]; // length is a list of 3 integers

length[0]=12; length[1]=12; length[2]=12;

Binghamton

University

CS-220

Spring 2016

Leaky Abstraction

• An array can be treated as an indexable list of data items but…

• An array is a contiguous list of data items in memory or …

• A contiguous list of data items in memory is an array

int array[10];

array == &(array[0]) or (*array)=array[0]

array[i] ==*(array+i);

Binghamton

University

CS-220

Spring 2016

Pointer / Array Ambiguity

• In C, we can treat pointers like arrays, and arrays like pointers

Using array notation

int strlen(char str[]) {

int i=0;

while(str[i]!=0) {

i++;

}

return i;

}

Using pointer notation

int strlen(char *str) {

int i=0;

while((*str)!=0) {

i++; str++;

}

return i;

}

Binghamton

University

CS-220

Spring 2016

Inverted Arrays

• Standard representation of arrays in CS is
top to bottom.

int vec[5]={365,366,367,368,369};

Label Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

0xFFFF FFF4 0xDEAD BEEF

0xFFFF FFF0 0xDEAD BEEF

…

vec[4] 0x0000 0C14 0x0000 011C

vec[3] 0x0000 0C10 0x0000 011B

vec[2] 0x0000 0C0C 0x0000 011A

vec[1] 0x0000 0C08 0x0000 0119

vec[0] 0x0000 0C04 0x0000 0118

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

vec vec[0]=365

vec[1]=366

vec[2]=367

vec[3]=368

vec[4]=369

Binghamton

University

CS-220

Spring 2016

Multi-Dimensional Arrays

int xyz[2][3]; // 2 rows/3 cols

• Think of multi-dimensional array indexes
like an odometer… rightmost digit first

xyz xyz[0][0] xyz[0][1] xyz[0][2]

xyz[1][0] xyz[1][1] xyz[1][2]

Label Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

0xFFFF FFF4 0xDEAD BEEF

…

xyz[1][2] 0x0000 0C18 0x0000 011D

xyz[1][1] 0x0000 0C14 0x0000 011C

xyz[1][0] 0x0000 0C10 0x0000 011B

xyz[0][2] 0x0000 0C0C 0x0000 011A

xyz[0][1] 0x0000 0C08 0x0000 0119

xyz[0][0] 0x0000 0C04 0x0000 0118

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

Binghamton

University

CS-220

Spring 2016

Arrays of Pointers

int *xyz[2]; // 2 pointers to lists

Label Address Value

…

xyz[1] 0x0000 CA0c 0x0000 C708

xyz[0] 0x0000 CA08 0x0000 C000

…

xyz[1][2] 0x0000 C710 0x0000 0005

xyz[1][1] 0x0000 C70C 0x0000 0004

xyz[1][0] 0x0000 C708 0x0000 0003

…

xyz[0][2] 0x0000 C008 0x0000 0002

xyz[0][1] 0x0000 C004 0x0000 0001

xyz[0][0] 0x0000 C000 0x0000 0000

…

xyz xyz[0]

xyz[1]

(*xyz[0])[0]

(*xyz[0])[1]

(*xyz[0])[2]

(*xyz[1])[0]

(*xyz[1])[1]

(*xyz[1])[2]

Binghamton

University

CS-220

Spring 2016

Difference between Arrays and Pointers

Array

• Fixed, pre-defined length

• Space reserved by compiler

• All 2D rows equal length

Pointers to List

• No pre-defined length

• No space reserved

• 2D rows may be varying length

Binghamton

University

CS-220

Spring 2016

Arrays with Undefined Sizes

• C allows the first dimension of an array to be of unspecified size

• e.g. float vec[]; // vector of unspecified length

• e.g. int m[][3]={0,1,2,3,4,5,6,7,8};
• m is a matrix of an unspecified number of rows

• Each row in m has 3 columns

• Space is reserved for 9 values (based on initializer) or 3 rows

• Why does C require all but the first dimension to be specified?

Binghamton

University

CS-220

Spring 2016

Dealing with Undefined lengths

• Implicit array length
int triArea(int *sides); // sides points to three integers

• Explicit independent length
int polyArea(int n, int sides[]); // sides points to n integers

• “Guard” values
int polyArea(int * sides) { // sides points to list of positive integers

for(; (*sides)>0; sides++) { // Deal with next side…

Binghamton

University

CS-220

Spring 2016

Character Strings

• In C, there is no “string” type

• Text consists of an array of characters

char nextLine[80];

char bgColor[]=“magenta”; // bgColor has 8 values

• By default “Guard” is a “null terminator” = 0x00
• Note: NOT “NULL”

Binghamton

University

CS-220

Spring 2016

Working with Strings

char *name=“Thomas”;

printf(“name[0] is at %p\n”,&name[0]);

printf(“name value is %x\n”,name);

printf(“name string is %s\n”,name);

name[0] is at 0x23cb10

name value is 23cb10

name string is Thomas

32

